Design for Six Sigma (DFSS)


#|A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z Index  


Design for Six Sigma (DFSS) - short version

The branch of Six Sigma that enables you to prevent defects from occurring in the first place through superior design based on the Voice of the Customer (VOC).



Design for Six Sigma (DFSS) - short version

Design for Six Sigma (DFSS) is a separate and emerging business-process management methodology related to traditional Six Sigma. While the tools and order used in Six Sigma require a process to be in place and functioning, DFSS has the objective of determining the needs of customers and the business, and driving those needs into the product solution so created. DFSS is relevant to the complex system/product synthesis phase, especially in the context of unprecedented system development. It is process generation in contrast with process improvement.

DMADV, Define – Measure – Analyze – Design – Verify, is sometimes synonymously referred to as DFSS. The traditional DMAIC (Define – Measure – Analyze – Improve – Control) Six Sigma process, as it is usually practiced, which is focused on evolutionary and continuous improvement manufacturing or service process development, usually occurs after initial system or product design and development have been largely completed. DMAIC Six Sigma as practiced is usually consumed with solving existing manufacturing or service process problems and removal of the defects and variation associated with defects. On the other hand, DFSS (or DMADV) strives to generate a new process where none existed, or where an existing process is deemed to be inadequate and in need of replacement. DFSS aims to create a process with the end in mind of optimally building the efficiencies of Six Sigma methodology into the process before implementation; traditional Six Sigma seeks for continuous improvement after a process already exists.

DFSS seeks to avoid manufacturing/service process problems by using advanced Voice of the Customer techniques and proper systems engineering techniques to avoid process problems at the outset (i.e., fire prevention). When combined, these methods obtain the proper needs of the customer, and derive engineering system parameter requirements that increase product and service effectiveness in the eyes of the customer. This yields products and services that provide greater customer satisfaction and increased market share.These techniques also include tools and processes to predict, model and simulate the product delivery system (the processes/tools, personnel and organization, training, facilities, and logistics to produce the product/service) as well as the analysis of the developing system life cycle itself to ensure customer satisfaction with the proposed system design solution. In this way, DFSS is closely related to systems engineering, operations research (solving the Knapsack problem), systems architecture and concurrent engineering.

DFSS is largely a design activity requiring specialized tools including: quality function deployment (QFD), axiomatic design, TRIZ, Design for X, design of experiments (DOE), Taguchi methods, tolerance design, Robustification and response surface methodology. While these tools are sometimes used in the classic DMAIC Six Sigma process, they are uniquely used by DFSS to analyze new and unprecedented systems/products.



Chartitnow

IQ Catch Banner

Advertising





Definition in Chinese | Definition in French | Definition in Italian | Definition in Spanish | Definition in Dutch | Definition in Portuguese | Definition in German | Definition in Russian | Definition in Japanese | Definition in Greek | Definition in Turkish | Definition in Hebrew | Definition in Arabic | Definition in Swedish | Definition in Korean | Definition in Hindi | Definition in Vietnamese | Definition in Polish | Definition in Thai