Bioplastic


#|A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z Index  


Bioplastic - short version

Natural polymers that are made without petrochemicals: for example, cellulose based, starch based and natural based rubber materials. Some are completely biodegradable and require less energy to produce than synthetic polymers.



Bioplastic - long version

Bioplastics (also called organic plastics) are a form of plastics derived from renewable biomass sources, such as vegetable oil, corn starch, pea starch or microbiota, rather than fossil-fuel plastics which are derived from petroleum.

Applications

Because of their biological degradability, the use of bioplastics is especially popular for disposable items, such as packaging and catering items (crockery, cutlery, pots, bowls, straws). The use of bioplastics for shopping bags is already common. After their initial use they can be reused as bags for organic waste and then be composted. Trays and containers for fruit, vegetables, eggs and meat, bottles for soft drinks and dairy products and blister foils for fruit and vegetables are also already widely manufactured from bioplastics.

Non-disposable applications include mobile phone casings, carpet fibres, and car interiors, fuel line and plastic pipe applications, and new electroactive bioplastics are being developed that can be used to carry electrical current. In these areas, the goal is not biodegradability, but to create items from sustainable resources.

Performance and usage

Many bioplastics lack the performance and ease of processing of traditional materials. Polylactic acid plastic is being used by a handful of small companies for water bottles. But shelf life is limited because the plastic is permeable to water - the bottles lose their contents and slowly deform. However, bioplastics are seeing some use in Europe, where they account for 60% of the biodegradable materials market. The most common end use market is for packaging materials. Japan has also been a pioneer in bioplastics, incorporating them into electronics and automobiles.

Plastic types

Starch based plastics
Constituting about 50 percent of the bioplastics market, thermoplastic starch, such as Plastarch Material, currently represents the most important and widely used bioplastic. Pure starch possesses the characteristic of being able to absorb humidity and is thus being used for the production of drug capsules in the pharmaceutical sector. Flexibiliser and plasticiser such as sorbitol and glycerine are added so that starch can also be processed thermo-plastically. By varying the amounts of these additives, the characteristic of the material can be tailored to specific needs (also called "thermo-plastical starch"). Simple starch plastic can be made at home shown by this method[2].

Polylactic acid (PLA) plastics
Main article: Polylactic acid
Polylactic acid (PLA) is a transparent plastic produced from cane sugar or glucose. It not only resembles conventional petrochemical mass plastics (like PE or PP) in its characteristics, but it can also be processed easily on standard equipment that already exists for the production of conventional plastics. PLA and PLA-Blends generally come in the form of granulates with various properties and are used in the plastic processing industry for the production of foil, moulds, tins, cups, bottles and other packaging.

Poly-3-hydroxybutyrate (PHB)
The biopolymer poly-3-hydroxybutyrate (PHB) is a polyester produced by certain bacteria processing glucose or starch. Its characteristics are similar to those of the petroplastic polypropylene. The South American sugar industry, for example, has decided to expand PHB production to an industrial scale. PHB is distinguished primarily by its physical characteristics. It produces transparent film at a melting point higher than 130 degrees Celsius, and is biodegradable without residue.

Polyamide 11 (PA 11)
PA 11 is a biopolymer derived from natural oil. It is also known under the tradename Rilsan B commercialized by Arkema. PA 11 belongs to the technical polymers family and is not biodegradable. Its properties are similar than PA 12 although emissions of greenhouse gases and consumption of non-renewable resources are reduced during its production. Its thermal resistance is also superior than PA 12. It is used in high performance applications as automotive fuel lines, pneumatic airbrake tubing, electrical anti-termite cable sheathing, oil & gas flexible pipes & control fluid umbilicals, sports shoes, electronic device components, catheters, etc.

Bio-derived polyethylene
The basic building block (monomer) of polyethylene is ethylene. This is just one small chemical step from ethanol, which can be produced by fermentation of agricultural feedstocks such as sugar cane or corn. Bio-derived polyethylene is chemically and physically identical to traditional polyethylene - it does not biodegrade but can be recycled. It can also considerably reduce greenhouse gas emissions. Brazilian chemicals group Braskem claims that using its route from sugar cane ethanol to produce one tonne of polyethylene captures (removes from the environment) 2.5 tonnes of carbon dioxide while the traditional petrochemical route results in emissions of close to 3.5 tonnes.

Braskem plans to introduce commercial quantities of its first bio-derived high density polyethylene, used in a packaging such as bottles and tubs, in 2010 and has developed a technology to produce bio-derived butene, required to make the linear low density polethylene types used in film production.

Genetically modified bioplastics
Genetic modification (GM) is also a challenge for the bioplastics industry. None of the currently available bioplastics - which can be considered first generation products - require the use of GM crops. However, it is not possible to ensure corn used to make bioplastic in North America is GM-free.

European consumers are hostile to any products that are linked to the GM industry. As a result, some UK retailers such as Sainsbury's will not use bioplastic manufactured in the US, such as Natureworks polylactic acid.

There is also concern that the route from corn to bioplastics is not the most efficient. Looking further ahead, some of the second generation bioplastics manufacturing technologies under development employ the "plant factory" model, using genetically modified crops or genetically modified bacteria to optimise efficiency. However, a change in consumer perception of GM technology in Europe will be required for these to be widely accepted.



Chartitnow

IQ Catch Banner

Advertising





Definition in Chinese | Definition in French | Definition in Italian | Definition in Spanish | Definition in Dutch | Definition in Portuguese | Definition in German | Definition in Russian | Definition in Japanese | Definition in Greek | Definition in Turkish | Definition in Hebrew | Definition in Arabic | Definition in Swedish | Definition in Korean | Definition in Hindi | Definition in Vietnamese | Definition in Polish | Definition in Thai